

Class QZ 14

Sind the area enclosed by
$$\frac{5(x)=8-x^2}{3}$$
 and $\frac{3(x)=x^2}{3}$ and $\frac{3(x)=x^2}{3}$ and $\frac{3(x)=x^2}{3}$ are $\frac{3(x)=x^2}{3}$ and $\frac{3(x)=x$

Suppose
$$S(x)$$
 is a continuous sunction over $[a,b]$

the average value of $S(x)$ on $[a,b]$ is

$$\int_{ave}^{2} \frac{1}{b-a} \int_{0}^{b} S(x) dx$$
Ex: Sind Save Sor $S(x) = 4x - x^{2}$ on $[0,2]$
 $S(x)$ is a polynomial sunction \Rightarrow continuous

everywhere

$$\int_{ave}^{2} \frac{1}{2-0} \int_{0}^{2} (4x-x^{2}) dx$$

$$= \frac{1}{2} \left[\frac{4x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{2} = \frac{1}{2} \left[2 \cdot 2^{2} - \frac{2^{3}}{3} \right] = \frac{1}{2} \left[8 - \frac{8}{3} \right]$$

$$= \frac{1}{2} \cdot \frac{16}{3} = \frac{9}{3}$$

Sind the average value of
$$S(x) = \frac{x}{\sqrt{3+x^2}}$$
 on [1,3].

$$S(x) = \frac{x}{\sqrt{3+x^2}} = \frac{x}{\cot x} \text{ everywhere}$$

$$S(x) = \frac{1}{3+x^2} = \frac{x}{\cot x} \text{ everywhere}$$

$$S(x) = \frac{1}{3+x^2} = \frac{x}{\sqrt{3+x^2}} = \frac{1}{2} \int_{1}^{3} \frac{x}{\sqrt{3+x^2}} dx$$

$$= \frac{1}{2$$

The Mean Value Theorem for integrals:

If S(x) is a Continuous Sunction on [a,b]

there exists a number C in (a,b) Such

that

$$f(c) = f_{ave} = \frac{1}{b-a} \int_{a}^{b} S(x) dx$$

Is we multiply by b-a, we get $\int_{a}^{b} S(x) dx = S(c) \cdot (b-a)$

Sind C in
$$[0,8]$$
 for the Sunction $S(x)=\sqrt[3]{x}$
Such that $S(c) = Save$.
 $S(x) = \sqrt[3]{x}$ Save $\int_{0}^{1} S(x) dx$
is Cont. everywhere $\int_{0}^{1} \frac{1}{8-0} \int_{0}^{8} \sqrt[3]{x} dx$
 $\int_{0}^{1} \frac{1}{8-0} \int_{0}^{8} \sqrt[3]{x} dx$
 $\int_{0}^{1} \frac{1}{8} \cdot \frac{x}{\sqrt[3]{3}} \int_{0}^{8} \frac{1}{8} \cdot \frac{x}{\sqrt[3]{3}} \int_{0}^{8} \frac{1}{8} \cdot \frac{x}{\sqrt[3]{3}} \int_{0}^{8} \frac{1}{32} \cdot \frac{x}{\sqrt[3]{3}} \int_{0}^{8} \frac{x}{\sqrt[3]{3}} \int_{0}^{8} \frac{1}{32} \cdot \frac{x}{\sqrt[3]{3}} \int_{0}^{8} \frac{1}{\sqrt[3]{3}} \int_{0}^{8} \frac{x}{\sqrt[3]{3}} \int_{0}^{8} \frac{x}{\sqrt[3]{3}} \int_{0}^{8$

Sind C in [0,2] Such that
$$f(c) = Save$$

Sor $f(x) = \frac{2x}{(1+x^2)^2}$.

 $f(x) = \frac{2x}{(1+x^2)^2}$.

 $f(x) = \frac{2x}{(1+x^2)^2}$.

 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$ $f(x) = 2x dx$
 $f(x) = \frac{1}{2-0} \int_0^2 \frac{2x}{(1+x^2)^2} dx$

Find the area enclosed by
$$0 \le y \le 1$$
 and $x = y^2 - 1$ and $y = x^2$. $x = y^2 - 1$ $y = 1$

Find the area enclosed by
$$y = |\chi|$$
 and $y = \chi^2 - 2$. For Bottom $y = \chi^2 - 2$. For $\chi^2 - \chi^2 - 2 = \chi$ $\chi^2 - \chi - 2 = 0$ $\chi^2 - \chi - 2 =$

Evaluate
$$\int_{1/2}^{1} \frac{\cos(x^2)}{x^3} dx$$
Hint:
Let $u = x^2$

$$du = -2x^3 dx$$

$$du = \frac{-2}{x^3} dx$$

$$du = \frac{-2}{x^3} dx$$

$$du = \frac{-2}{x^3} dx$$

$$= \frac{1}{2} \int_{-1/2}^{1/2} \cos u du$$

$$= \frac{1}{2} \int_{-1/2}^{1/2} \sin u du$$

Suppose
$$S(x)$$
 is continuous and

$$\int_{0}^{4} S(x) dx = 10, \quad find \int_{0}^{2} S(2x) dx.$$

$$\int_{0}^{2} S(2x) dx \qquad \qquad \int_{0}^{2} S(2x) dx.$$

$$\int_{0}^{2} S(2x) dx.$$

$$\int_{0}^$$

Is
$$S(x)$$
 is continuous and $\int_{0}^{3} S(x) dx = 4$, S_{ind}

1) $\int_{0}^{0} S(x) dx = -4$

2) $\int_{0}^{3} S(x) dx = 0$

3) $\int_{0}^{3} S(x) dx = 0$

4) $\int_{0}^{3} x S(x^{2}) dx$

1= x^{2}

2= x^{2}

3= x^{2

Extended Version of the Sundamental theorem of Calculus Part I:

Suppose f is continuous on [u(x), V(x)]for $0 \le x \le b$, and $u(x) \in V(x)$ are also cont

Sor $0 \le x \le b$. $\frac{1}{3x} \int_{u(x)}^{v(x)} f(u(x), v(x)) dx$

Sind
$$h'(x)$$
 is $h(x) = \int_{\sqrt{x}}^{x^3} \frac{v(x) = x^3}{\cos(t^2)} dt$
 $h'(x) = \int_{\sqrt{x}} \frac{(\cos(t^2))}{\sin(t^2)} dt$
 $= \int_{\sqrt{x}}^{x^3} \frac{v(x) = x^3}{\sin(t^2)} dt$
 $= \int_{\sqrt{x}}^{x^3} \frac{v(x) = x^3}{\cos(t^2)} dt$

Discuss the Concavity of
$$h(x) = \int_{0}^{x} \frac{dx}{x^{2} + 4x} dx$$
.

$$h'(x) = \int_{0}^{x} \frac{dx}{x^{2} + x + 2} dx - \int_{0}^{x} \frac{dx}{x^{2} + x + 2} dx$$

$$h'(x) = \frac{x^{2}}{x^{2} + x + 2} dx - \int_{0}^{x} \frac{dx}{x^{2} + x + 2} dx$$

$$h'(x) = \frac{x^{2}}{x^{2} + x + 2} dx$$

$$h''(x) = \frac{x^{2}}{x^{2} + x +$$

h(x)=
$$\int_{0}^{x} \frac{v(x)}{s(t)} dt$$

on what interval $h(x)$ is increasing?
We need $h'(x)$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$h'(x) = \int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} u(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) - \int_{0}^{x} v(x) \cdot u'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) \cdot v'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) \cdot v'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) \cdot v'(x)$$

$$\int_{0}^{x} v(x) \cdot v'(x) \cdot v'(x) \cdot v'(x)$$

$$\int_{$$

$$f(x) = \int_{0}^{\sin x} \sqrt{1 + t^{2}} dt,$$

$$g(y) = \int_{3}^{y} f(x)dx \qquad g(y) = f(y) \cdot 1 - f(3) \cdot 0$$

$$f(x) = \int_{3}^{y} f(x)dx \qquad g'(y) = f(y)$$

$$g'(x) = \int_{0}^{\sin x} f(x)dx \qquad g'(y) = \int_{0}^{\sin y} f(y)dy = \int_{0$$

Class QZ 15

Evaluate
$$\int_{0}^{0} \chi \int_{0}^{2} - \chi^{2} d\chi = \int_{0}^{1} \frac{dy}{2} dy = \int_{0}^{2} \frac{dy}{2}$$